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Abstract

Seasonal changes cause an array of physiological, biochemical and morphological changes in plants, thereby affecting plant growth and development.
The measurement of some biochemical indexes is a method for the evaluation of cultivars and the explanation of their behavioral patterns from normal
to severe environmental changes. This study was carried out to investigate the effects of seasonal changes on the changes of antioxidant capacity, total
protein, peroxidase (POD) and superoxide dismutase (SOD) in five citrus species (the Valencia orange, Kinow tangerine, Mexican lime, Persian lime
and Darab native orange) during the four seasons of the year with three replications in the statistical design split plot. The leaves of these species were
sampled in May, August, November and February in the range of the average temperatures 21-25, 31-35, 15-20 and 10-15 ° C, respectively. Results
show that amount of protein, total antioxidant capacity and POD in the spring (the time of fruit growth and development) was great. The comparison
between the data averages demonstrated that the protein and the POD enzyme have the minimum activity in the summer, whereas the SOD had the
maximum activity in the summer (as the hottest season of the year). The amount of POD enzyme in Persian lime and Mexican lime was considerably
greater than that of the other investigated cultivars. These two cultivars can be a source of producing the commercial POD. The greatest amount of
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protein was observed for the Darab native orange and Persian lime and the smallest amount was observed in the Valencia orange in the summer.
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INTRODUCTION

he environmental stress results in the oxidative stress

through producing and accumulating reactive oxygen
species (ROS). Oxygen radicals could be controlled via
antioxidant compounds. Still, a risk for severe cellular damage
might take place when ROS are produced excessively under stress
circumstances . Seasonal alterations can be represented by
variations in plant metabolism and have influences upon
biosynthetic pathways ' Plants have evolved a countless number
of defense systems to survive continuous biotic attacks
perpetually making changes to weather and other environmental
conditions . However, the plant antioxidant response varies with
such exogenous factors as plant development environments,
contributing to resistance or sensitivity . Moreover, the lipid
membrane free radical-induced peroxidation is not only a
reflection but also a measure of stress-induced cellular damage "'
In order to deal with the oxidative damage under considerably
adverse circumstances, plants have produced antioxidant defense
systems like the antioxidant enzymes SOD, APX, POD, and CAT
. The antioxidant enzymes levels are higher in tolerant species
than those in sensitive species under miscellaneous
environmental stresses . The antioxidant activity is principally
pertinent to the producing of chemical agents utilized for the plant
protection. The plant free radical scavenging action observation
can function as a monitor for the stressor conditions (e.g. seasonal
and climatic variations) which generate these antioxidant
compounds. Alternatively, changes in antioxidant compounds
and enzyme activities reveal the effects of environmental stresses
upon plant metabolism and have impacts on the cellular
antioxidant defense capacity. As mentioned above, the
antioxidant activity varies with the physiological and biochemical

parameters . Accordingly, enzyme activities are regarded as a
significant indicator in plant response and behavior toward
seasonal variations. A change in both time and location makes the
seasonal environment complicated to foresee the plant responses
to the varying conditions of the environment . The equilibrium
between ROS production and activities of antioxidative enzyme
specifies whether oxidative signaling or damage will take place ™
POD is a crucial multifunctional enzyme and comprises roughly
15% of the entire cellular proteins "”. POD participates in certain
essential physiological processes and is omnipresent in plants """
PODs adjust the cellular H202 levels and ROS production and
catalyze the H202 reduction by applying a variety of substrates
"l The DPPH radicals scavenging activity tends to be utilized as a
basic screening method for testing the antiradical activity of a
great number of compounds. Lester, 2008 " proved that since
antioxidants can scavenge/neutralize ROS, the tissue with high
antioxidant capacities would show further resistance to oxidative
stress than that with lower antioxidant potentials.

The enzyme superoxide dismutase (SOD), a radical
superoxide scavenger, is a vital instrument to protect plants
against the oxidative stress and makes O2- into H202, which is,
then, converted to H20 by ascorbate peroxidase (APX) through
the oxidation of AA or by catalases (CAT) "". Under thermal
stress conditions, namely heat or chilling temperatures, metabolic
and physiologic plant processes are disrupted. As a result, there
will occurs a protein aggregation and denaturalization in
chloroplasts and mitochondria, destruction in membrane lipids,
and a production of toxic compounds, thereby leading to the ROS
overproduction ", Plants are less vulnerable to climatic
variations, probably due to their natural properties and great
adaptability .
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This occurs due to the differential efficiency of antioxidants in
neutralizing the noxious effects of ROS on the cells. The purpose
ofthe present study is to contribute to a better understanding of the
physiological responses of the Valencia orange, Kinow tangerine,
Mexican lime, Persian lime and Darab native orange plants to the
seasonal changes. In fact, the influence of the four seasons on the
contents of proteins, peroxidase (POD), antioxidant capacity, and
superoxide dismutase (SOD) will be investigated in different
citrus species.

MATERIALAND METHODS

Four experiments (each in one season) were carried out. The
summer, fall, winter and spring tests were done in
February/March, May/June, August/September and
November/December, respectively. The cultivars in the test were
7 years old trees of five citrus species (the Valencia orange, Kinow
tangerine, Mexican lime, Persian lime and Darab native orange)
and the leaves were used and they were selected randomly from
the mature and immature leaves. The temperature range of the
sampling days was chosen based on the ten-year average
temperatures of each season, which had been recorded at the
synoptic station in the sampling location.

Enzyme extracts were obtained at 4°C. For enzyme extracts,
0.5 g of the leaf specimens was homogenized with 50 mM
potassium phosphate buffer (pH 7), containing 0.5 mM EDTA at
2°C (w/v) polyvinylpolypyrrolidone (PVPP). The samples were
centrifuged at 14,000 rpm for 15 min, and supernatants were
applied to measure the enzyme activity. The whole
spectrophotometric analyses were evaluated by Shimadzu (UV
1800) """, Superoxide dismutase (SOD) activity was estimated by
its capability to prevent the photochemical decrease of nitro blue
tetrazolium (NBT) at 560 nm. The reaction mixture (1 mL) was
composed of 75 uM NBT, 13 mM L-methionine, 0.1 mM EDTA
and 2 uM riboflavin in 50 mM potassium phosphate buffer (pH 7).
The reaction and control mixture were laid for 15 min in 300 pmol
m ' s " irradiance at 25°C. A non-irradiated reaction blend was
employed as blank.

One unit of the SOD activity was regarded as the amount of
SOD needed to create a 50°C inhibition of the NBT
photochemical reduction. The specific enzyme activity was
considered as units per mg of the fresh wet leaf"”’. The Peroxidase
(POD) activity was measured based on Ballester et al, 2006 "’
The reaction blend constituted 475 nL. H202 100 mM , 475 pL
guaiacol 45 mM, and 100 pL enzyme extract in a final volume of
1000 pL. The reaction was launched by adding the enzyme
extract. The tetraguaiacol formation was estimated at 470 nm.
One unit of the enzymes was defined as the quantity of enzyme to

disintegrate 1 pM of H202 per min at 25[1C and the enzyme
activity was viewed as units per g of the fresh wet leaf. The
antioxidant capacity of the leaves was assessed in accordance
with the method of Abd-Ghafaretal, 2010 "

Measurement of total protein:

The water-soluble proteins concentration in the supernatants
of each leaf extract was measured by the procedure of Bradford,
1976 " utilizing the bovine serum albumin (BSA) as standard.
Each supernatant was tested three times for both protein
concentration and enzyme activities.

Statistical analyses:

The experiments were conducted using a completely
randomized design with three replications. A preliminary test was
run prior to the main experiment reported here. Data were
analyzed as a 2-factor linear model via PROC GLM procedure by
SAS software (ver. 9.1 2002-2003), where treatments and storage
time were the factors.

RESULTS

The effects of seasonal environments on total protein
changes:

The effects of the cultivar, various harvesting times and their
interaction on Protein were significant (P < 0.01). The
comparison between the data averages indicated that within
species had a great effect on the amount of leaf protein. In autumn,
due to the ripening of fruits, the amount of protein increases once
again. In comparison with the species, the Darab native orange
showed the highest protein activities (15 mg/swgr) and Kinow
tangerine, (12.3 mg/swgr, respectively) in the autumn. Persian
lime showed exceptional activities (23 activity/g FW) in the
spring it had the second lowest activity, as compared to the other
cultivars (Fig 3).

The effects of seasonal environments on total antioxidant
capacity changes:

The effects of the cultivar, various harvesting times and their
interaction on antioxidant capacity were significant (P<0.01). It
was indicated that the content of total antioxidant capacity was
greater in the leaves in the spring (58%) and is the lowest in the
leaves in summer (13%) and autumn (11%) and after that it
increased in the winter (52%) (Fig 4).The highest antioxidant
capacity in the winter was observed in Kinow tangerine (56%)
and Persian lime (59%) (Fig6).

The effects of seasonal environments on POD changes:

The effects of species, various harvesting times and their
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Figure 1 : The simple effect of seasons on the total protein content.
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interaction on POD were significant (P < 0.01). As can be
observed in the present study, POD had a strong activity in the
spring (275 U/mg FW min), while it showed the lowest activity in
the warmest time in the summer(175 U/mg FW min) after that
observed a re-increasing of POD in the autumnal leaves(200
U/mg FW min) (Fig 7). As compared to the genotypes, Mexican
lime and Persian lime showed the highest POD activities in the 4
seasons (400 U/mg FW min) and Valencia had the lowest activity
(50 U/mg FW min) (Fig 8).

The effects of seasonal environments on SOD changes:

The results indicated that the effects of the cultivar and
various harvesting times on the SOD enzyme activity are

significant (P<0.01) and interaction between cultivar and various
harvesting time factors in regard to the SOD activity is not
considerable. As can be seen in figure10 the high temperatures
increased the SOD enzyme activity. In this study, the temperature
rise led to a remarkable increase in the SOD activity.SOD was
more important in kinow tangerine and did not show any
significant difference, as compared with the persian lime (1.7
U/mg/FW) (Fig 11).

DISCUSSION

It was revealed that the amount of total protein is higher in the
young and mature leaves in the spring and is the lowest in the
summer leaves. Shao”” showed that in the spring the plant makes
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Figure 7 : The simple effect of seasons on POD enzyme activity
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use of its whole capacity for survival. A decline in the protein
content may be in view of inhibiting protein synthesis or protein
degradation ", Changes in the levels of antioxidants may also
take place during the aging of the plant, which occurs
concomitantly with higher protein degradation, and loss of
chlorophyll . The high temperature in the summer (the ten-year
average temperature 38°C) can result from a reduction in the
amount of protein in this season. In a similar investigation, """ was
reported that a drop in the total protein is an indirect damage
arising from high temperatures. The main reason for this
phenomenon in the summer could be the transmission of the
nutrients from leaves to fruits. Moreover, leaf aging may play a
part in this case ®". Another reason is the plant dormancy under
unfavorable environmental conditions. During unfavorable

environmental circumstances, the dormancy takes place and the
plant activities are interrupted *”. The rapid accumulation of Heat
Shock Proteins (HSPs) in the sensitive organs can play a major
role in the protection of the metabolic apparatus of the cell,
thereby acting as a key factor for plant conformity and survival
under heat stress “’. It appears that the spring and fall
temperatures were the desirable growth ones for most of the
cultivars, resulting from higher protein levels. The climate had a
conspicuous influence on the plant and the enzyme indexes. The
cool spring weather leads to an increase in cell reproduction,
thereby producing larger fruits at the end of the season. Thus, the
fruits growing in the warm climate are smaller than those growing
in the cooler climate™".
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Antioxidants have to play a direct role in protecting plants in
an inappropriate environment . Additionally, it has been
indicated that the content of total antioxidant capacity was greater
in the leaves in the spring and was the lowest in the leaves in the
summer and fall and then increased in the winter (Fig 4). It is
already known that the alleviation of oxidative damage tends to be
correlated with an efficient antioxidant capacity under low
temperature stress . In this experiment, the highest antioxidant
capacity in the winter was observed in Kinow tangerine and
Persian lime (Fig 6). This result discloses that these species can
greatly ameliorate their antioxidant capacity under low
temperature. This result was in consistency with the previous
finding by Rapisarda et al, “" who showed the increase of the
antioxidant capacity during low-temperature stress in the Citrus
fruit. Increases in the activity of leaf antioxidant systems have
been proved to be indispensible in the acclimation of plants to
winter conditions "

The formation and level of such antioxidants may be
seasonality marked in response to changes in the environmental
conditions, even in the absence of anthropic interferences. This is
plausible because the seasonality in solar irradiation,
photoperiod, temperature and relative humidity, among other
meteorological factors, as well as influencing the stomata
aperture, regulates the photosynthesis and respiration processes
on chloroplasts and mitochondria and thus the natural production
of ROS in the cells. Variations in the levels of antioxidants may
also occur during the aging of the plant, which occurs
concomitantly with higher protein degradation, and loss of
chlorophyll . The key role of the POD enzyme activity has been
proved for plant development processes, which scavenge the
H202 in cell organelles . As can be observed in the present
study, POD had a strong activity in the spring, while it showed the
lowest activity in the warmest time in the summer after that
observed are-increasing of POD in the autumnal leaves (Fig 7).

The re-increasing of POD in the autumnal leaves can be a
result of approaching the induction time and beginning the cold
days in view of the specific fruit ripening time in certain species. It
has been observed that POD includes the auxin catabolism. For
example, a research on strawberry prior to ripening revealed a
reduction in the amount of auxin and subsequently the greatest
POD enzyme activity “”. PODs are involved not only in
scavenging H202 but also in plant growth, development,
lignification, suberization, and cross-linking of cell wall
compounds "*. As compared to the genotypes, Mexican lime and
Persian lime showed the highest POD activities in the four
seasons. Tolerant plants often have higher POD activity than
sensitive plants under stress conditions; this is true for salt-
tolerant tomato "

Recently, there has been an increasing interest in the
production of enzymes from the plant tissue culture. The studies
in the literature have shown that call from plant sources like
cowpea, green pea and radish are the possible sources of the
commercial production of peroxidase " At present, peroxidase is
commercially produced only from the horseradish roots. In
addition, other studies revealed that there is another potential

peroxidase source from Citrus aurantifolia (lime) flavedo callus
[33].

Superoxide dismutase makes superoxide radicals (O,) into
hydrogen peroxide (H,O,), POD reduces H,O, to water utilizing a
miscellany of substrates as electron donors. Ascorbate peroxidase
makes use of ascorbate as an electron donor to decrease H,0, to

water, and CAT turns H,O, into water and oxygen. In the presence
of O, and H202, the trace amounts of transition metals can give
rise to the highly toxic hydroxyl radical (OH). The rapid
detoxification of both O, and H,O, is, therefore, necessary to
prevent the oxidative damage. Numerous studies indicate that the
activity of antioxidant enzymes is correlated with plant tolerance
abiotic stresses .

As can be seen in Figure10, the high temperatures increased
the SOD enzyme activity. In this study, the temperature rise led to
a remarkable increase in the SOD activity. The enhancement of
the SOD activity in summer indicated that it has the highest
concentration of the superoxide radicals at this temperature, as
compared to the other temperatures. Superoxide dismutase is the
first line to protect the antioxidant enzyme against the oxygen

radical damages .

During the hottest seasons of the year, the respiratory rates of
the plants are higher and can also induce an increasing antioxidant
response due to a consequent higher ROS production in
mitochondria. This respiratory increase is associated with an
increase in the NADH synthesis . which is related to the
production of enzymes such as SOD. SOD was more important in
Darab local orange and did not show any significant difference, as
compared with the Valencia orange. Zhang et al™ found a
significant copper-zinc SOD increase in Elsholtzia haichowensis
during the enhancement of respiration rates induced by some
stress factors. Therefore, plants have evolved various
mechanisms to cope with the stresses imposed by naturally
fluctuating environmental conditions, generally modulated by the
gene expression and synthesis of compounds that may result in
higher stress tolerance.

CONCLUSION

Overall, it has been concluded from this study that the
quantity of protein, entire antioxidant capacity and POD in the
spring (the fruit growth and development time) is remarkable.
Through comparing the data averages, it has been revealed that
the protein and the POD enzyme have the least activity in the
summer, while the SOD has the greatest activity in the summer (as
the hottest season). Also, the proportion of POD enzyme in
Persian lime and Mexican lime is significantly more than that of
the other studied cultivars. These two cultivars can produce the
commercial POD. The highest amount of protein has been
obtained for the Darab native orange and Persian lime and the
lowest amount has been attained in the Valencia orange in the
summer.
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