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ABSTRACT
The Human Leukocyte Antigen (HLA) gene system situated on Chromosome 6 has been the subject 
of extensive research, primarily due to its vital role in transplantation and its links to autoimmune, 
infectious, and inflammatory diseases.  The classical HLA genes, including HLA-A, HLA-B, HLA-C, 
HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, and HLA-DRB1, exhibit a high degree of 
polymorphism among individuals within a population.  As many changes in the allele, computational 
imputation-based HLA typing is used extensively and in machine learning, it is possible through 
supervised learning.  There are many methods available for doing HLA imputation from HLA and 
SNP genotype data using different methods and algorithms.  The present study carefully examined 
the research articles and noticed that the Ensemble methods, Random Forest and Boosting 
algorithms are the few effective methods for HLA imputation.  Attribute bagging is a technique that 
enhances the accuracy and stability of classifier ensembles by employing bootstrap aggregating 
and random variable selection. The ensemble classifier method involves two main phases. In the 
first phase, a collection of base-level classifiers is generated, and in the second phase, a meta-
level classifier is trained to combine the outputs of the base-level classifiers. The R statistical 
programming language is utilized by Bioconductor software packages such as HIBAG, which are 
designed for the research community to impute (assign) HLA types using SNP data. In the present 
study, the details of different methods, software and algorithms used for HLA imputation are 
discussed for the non-biologists and biologists who work on HLA allele type prediction.

Keywords:Keywords: HLA prediction, SNP genotype, Imputation, HIBAG, Bioconductor.

INTRODUCTION
Research on HLA involves a multidisciplinary approach 
and can be conducted by various researchers from 
different fields like Immunologists, Geneticists, 
Transplantation researchers, Pharmacogeneticists, 
Bioinformaticians and Medical clinicians.  Along 
with these, computer researchers, particularly those 
specializing in computational biology can contribute 
their expertise in HLA data analysis, allele typing 
algorithms development, database management, data 
mining, population genetics, evolutionary analysis and 

integration of  HLA data to enhance our understanding 
of  HLA genetics.  Computer science researchers’ 
works with HLA often face challenges in searching 
for articles due to their multidisciplinary nature.  One 
of  the main difficulties that arises is the specialized 
terminology used in HLA research including HLA allele 
nomenclature, immune system and terms related to 
genetic concepts.  Therefore, the concepts relevant to 
HLA may be dispersed across various articles. On this 
aspect, in this review article, the basic concepts of  HLA, 
methods and software algorithms for the prediction of  
HLA allele typing are discussed to understand easily by 
non-biologists.
The Human Leukocyte Antigen (HLA) system 
encompasses a cluster of  genes that encode proteins 
crucial for antigen presentation to the immune 
system. These HLA genes are situated within the 
Major Histocompatibility Complex (MHC) region on 
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chromosome 6 in humans.  These genes encode the HLA 
proteins and they are involved in immune responses.  
The main classes of  HLA genes are HLA class I (HLA-
A, HLA-B, HLA-C), HLA class II (HLA-DP, HLA-DQ, 
HLA-DR) and class III.  Within the HLA system, each 
class has multiple genes and within each gene there are 
numerous genetic variants known as alleles.[1] The HLA 
gene system with different classes is shown in Figure 1.
HLA alleles are alternative forms or variations of  a 
specific HLA gene. They represent the different genetic 
sequences or variations found within a particular HLA 
gene. For example, the HLA-A gene has many different 
alleles such as HLA-A*01:01, HLA-A*01:02, HLA-
A*02:01, HLA-A*02:05, HLA-A*03:01 and so on. 
Similarly, other HLA genes have their own sets of  alleles. 
Alleles differ in their nucleotide sequences, resulting in 
differences in the proteins they encode.  The few alleles 
of  HLA-A and their corresponding protein product are 
shown in Figure 2.  Therefore, generally all the HLA 
genes exhibit a high degree of  polymorphism, making 
them one of  the most diverse gene families in the 
human genome. Polymorphism refers to the existence 
of  multiple alternative forms or variants of  a gene within 
a population. The evolutionary forces acting on these 

loci have resulted in a significant amount of  functional 
diversity.  Due to the complexity and diversity of  HLA 
polymorphism, comprehensive HLA typing methods 
are employed to accurately determine an individual’s 
HLA genotype.  The polymorphism of  HLA genes has 
important implications in various areas of  medicine and 
biology. In transplantation, matching the HLA types 
between donors and recipients is critical to minimize 
the risk of  graft rejection.  Furthermore, the presence 
of  HLA polymorphism is linked to the susceptibility or 
resistance to specific diseases, as well as the diversity of  
immune responses and individual differences in drug 
responses.[2-5]

Linkage disequilibrium and Hardy-Weinberg 
Equilibrium in HLA typing

In HLA typing, both Linkage Disequilibrium (LD) and 
Hardy-Weinberg Equilibrium (HWE) play important 
roles in understanding the genetic characteristics of  
HLA alleles.  LD represents the non-random association 
between alleles at distinct loci on the identical 
chromosome.  In the case of  HLA typing, LD is often 
observed between different HLA loci because of  their 
proximity to the same chromosome and the limited 
recombination events that occur in these regions. LD 
can influence the inheritance patterns of  HLA alleles, 
as certain alleles at different loci may be more likely 
to be inherited together. Understanding LD patterns 
is important for accurate HLA typing and haplotype 
inference.[6] On the other hand, Hardy-Weinberg 
Equilibrium describes the expected allele and genotype 
frequencies in an idealized population under specific 
assumptions, including random mating, no selection, no 
mutation, no migration, and large population size. In 
HLA typing, HWE is used as a reference for comparing 
observed allele frequencies with expected frequencies 
to assess departures from equilibrium. Deviations 

Figure 1: The genomic locations of HLA genes (loci) are 
depicted within the human leukocyte antigen (HLA) gene 

system on chromosome 6 including the classical class I and II. 
The position of the well-studied HLA-A, -C, -B, -DR, -DQ, -DP 

genes can be noticed.  
(Courtesy: HLA Nomenclature @ hla.alleles.org).

Figure 2: The alleles and corresponding proteins are shown 
for the HLA-A gene.
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from HWE in HLA typing may indicate several factors, 
such as population substructure, selection pressures, 
genotyping errors, or genetic drift. Departures from 
HWE can be particularly informative in HLA studies, as 
they may indicate the presence of  specific HLA alleles 
or haplotypes associated with diseases or traits.  Both 
LD and HWE are essential concepts in HLA typing and 
population genetics, providing insights into the genetic 
characteristics, evolutionary dynamics, and disease 
associations related to HLA alleles. Understanding LD 
patterns helps in haplotype inference and fine mapping 
of  HLA loci while assessing deviations from HWE 
allows for investigating genetic and evolutionary factors 
impacting HLA allele frequencies within populations.[7]

Genetic marker refers to genetic variants or markers 
that are physically located close to each other on 
a chromosome. In the context of  genetic studies, 
adjacent markers are typically assessed to study Linkage 
Disequilibrium (LD), which refers to the non-random 
association of  genetic variants within a population.  
Genetic markers can include Single Nucleotide 
Polymorphisms (SNPs) and these markers are scattered 
throughout the genome and can be spaced at different 
intervals. The concept of  adjacent genetic markers is 
particularly relevant when studying haplotypes, which 
are combinations of  genetic variants, inherited together 
on a chromosome. The LD between adjacent markers 
helps researchers to infer the haplotypes present in a 
population. By examining the LD patterns between 
adjacent markers, researchers can gain insights into the 
genetic structure, recombination rates, and historical 
events that have shaped the genome. LD analysis of  
adjacent markers is often used in population genetics, 
Genome-Wide Association Studies (GWAS) etc. to 
understand the inheritance of  traits, identify disease-
associated variants, or detect genomic regions under 
selection.[8] 

SNP and Haplotype in HLA genes

A Single Nucleotide Polymorphism (SNP) denotes a 
variation that arises at a single nucleotide position in the 
DNA sequence among individuals within a population. 
SNPs are the most prevalent form of  genetic variation 
and can manifest throughout the genome, including 
within the genes of  the HLA system.  Haplotype, in 
the context of  HLA genes, refers to a set of  closely 
linked genetic markers, including SNPs, located on the 
same chromosome. These markers exhibit a tendency to 
be inherited together as a block, primarily due to their 
close physical proximity.  Haplotype analysis involves 
examining the combination of  alleles or genetic 
markers on a chromosome to understand the patterns 

of  inheritance and genetic variation. SNP variations 
and haplotypes in HLA genes are valuable for various 
applications in medical and population genetics. SNP 
tags in the HLA system are specific SNPs that serve 
as representative markers for a larger set of  genetic 
variations in the HLA genes. They are used to capture 
genetic diversity and haplotype structure in a more 
manageable way for research purposes.[9] For visual 
representation, the SNP, haplotype and SNP tag in the 
HLA gene system is shown in Figure 3.

Unphased and phased SNP data

There are unphased SNP data and phased SNP data are 
available in the databases.  Unphased SNP data refers to 
genetic data where the phase or haplotype information 
of  SNPs is not known or explicitly determined. 
Phasing SNP data refers to the process of  determining 
the arrangement of  alleles on each chromosome, 
specifically which alleles are inherited together on the 
same chromosome. The phase information is essential 
for understanding the haplotype structure and how 
specific alleles are inherited together as a unit.  There 
are several reasons why SNP data may be unphased. It 
could be due to limitations in genotyping technologies, 
computational challenges, or lack of  available parental 
or trio data to infer the phase accurately.  Unphased 
SNP data can still be useful in many analyses, such as 
population genetics and GWAS, utilising statistical 
algorithms, reference panels, or haplotype imputation 
techniques to estimate the underlying haplotypes.[10,11] 

Allelic resolution and naming of HLA alleles

The World Health Organization (WHO) nomenclature 
committee for factors of  the HLA system is taking 
responsibility for standardizing and maintaining the 
continuously expanding list and nomenclature of  HLA 

Figure 3: The organization of SNP, haplotype and SNP tag in 
HLA-A gene system.
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alleles.[8] This system provides a unique and consistent 
way of  designating HLA alleles.  The HLA allele 
names consist of  multiple components that convey 
specific information about the allele. HLA typing can 
be performed at different levels of  resolution.[12] Low-
resolution typing: This provides a broad classification of  
HLA alleles and identifies the serological specificity or 
group of  alleles. It typically involves identifying common 
alleles or groups based on limited sequence information.  
In the example HLA-A*02, the typing identifies the 
occurrence of  the HLA-A*02 allele group. It provides 
a broad classification of  the HLA-A allele but does not 
specify the exact subtype or sequence variations within 
the allele group.  Intermediate-resolution typing: This 
provides a greater level of  detail than low-resolution 
typing. It involves identifying specific allele groups or 
subtypes within the broader serological specificity. It 
analyzes a subset of  variable positions within the HLA 
genes to determine more specific sequence variations.  
For example HLA-A*02:01, the typing identifies the 
specific subtype within the HLA-A02 allele group as 
HLA-A02:01. It indicates a more specific sequence 
variation within the HLA-A*02 group, but it may not 
provide complete information about all the possible 
sequence variations within the allele.  In some contexts, 
Intermediate-resolution typing is also mentioned as 
low-resolution typing.  High-resolution typing: High-
resolution typing represents the most detailed level of  
HLA typing. It involves sequencing specific regions of  the 
HLA genes to determine the precise sequence variations 
within alleles. In the example HLA-A*02:01:01 or HLA-
A02:01:01:01, the typing specifies the exact subtype and 
provides more precise and detailed information on the 
HLA-A allele.  It enables researchers and clinicians 
to differentiate between closely related alleles with 
subtle sequence variations, providing a more detailed 
understanding of  HLA diversity and its implications 
in various applications such as transplantation, disease 
associations, and population studies.[13] 

Reporting Format for HLA Assignments

HLA typing assignment refers to the procedure of  
identifying an individual’s HLA genotype, and it is 
crucial for the end user to have a clear understanding 
of  it. It is important to recognize that HLA typing 
assignments can be conducted at various levels of  
resolution, ranging from low resolution. Furthermore, 
the typing assignments must adhere to the WHO 
nomenclature for HLA system factors, which can be 
accessed at http://www.hla.alleles.org.  When reporting 
HLA assignments, it is important to follow standard 
guidelines to ensure clear and consistent communication 

of  the results. Initially begin by specifying the HLA 
gene for which the assignments are being reported, 
such as HLA-A, HLA-B, HLA-DRB1, etc. Next list the 
specific alleles that have been identified for the given 
HLA gene with asterisk (*) and a number representing 
the allele. Next indicate the level of  typing that has been 
performed, which refers to the resolution or depth of  
analysis. This could include low-resolution typing, high-
resolution typing, or allele-level typing.  If  there are any 
ambiguities or unresolved assignments, it is important 
to report them. Ambiguities refer to situations where 
the identified alleles cannot be definitively assigned 
due to overlapping patterns or inconclusive results.  
Finally, provide any relevant additional comments that 
may be important for the interpretation of  the results. 
This could include the presence of  rare or novel alleles, 
discrepancies, or any other notable observations.[14,15] 

Different types of  resolutions are depicted in Figures 4 
and 5.

Methods of HLA typing

Classical HLA genotyping methodologies, specifically 
Sequence-Based Typing (SBT), are widely recognized 
as the benchmark for HLA typing. SBT involves 
sequencing the exons of  HLA genes to accurately 
identify specific alleles, providing high-resolution 
and comprehensive HLA allele information. 
However SBT is time-consuming and expensive 
as its accuracy and precision make it essential for 
precise HLA matching in transplantation. Alternative 
genotyping methods make predictions and offer cost-
effective and efficient options but may provide lower 
resolution. Therefore, researchers and clinicians 
should consider the specific requirements of  their 
studies or applications when selecting the appropriate 
HLA genotyping approach.[14]

Figure 4: The general HLA typing resolution arrangement and 
the responsible HLA-A antigen binding protein.
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Reliability of HLA typing

Confirmatory HLA typing is a laboratory technique 
used to determine the specific genetic makeup of  
HLA genes in an individual and this high-resolution 
typing helps in organ transplantation by ensuring better 
matching between donor and recipient.  The term 
“confirmatory typing” has become less clear because 
typing practices and matching criteria have changed.  To 
ensure better clarity, it is recommended to replace the 
term “confirmatory typing” with “Verification typing” 
and “extended typing.” Verification typing focuses on 
validating initial results, while extended typing offers a 
more comprehensive characterization of  an individual’s 
HLA profile.  All three methods contribute to improving 
the accuracy and reliability of  HLA typing, ultimately 
supporting successful transplantation outcomes.[15]

Databases on HLA

The HLA allele frequencies for the disease associations 
and population data are available in different resources.  
NCBI ClinVar aggregates information about relationships 
between genetic variation and human health.[16] HapMap 
data, also known as a Haplotype Map, is a valuable tool 
for researchers seeking to identify genes and genetic 
variations that impact health and disease.[17] It can be 
accessed at http://www.hapmap.org.[17] The HapMap 
and 1000 genome project provides many HLA genotype 
data in different formats for the researchers for analyses. 
The Allele Frequency Net Database (allelefrequencies.
net), bethematchclinical.org, http://hla.alleles.org, 
Wellcome Trust Case Control Consortium (WTCCC) 
and http://ashi-hla.org resources also have HLA data.[18,19]

The interpretation of  HLA typing results often involves 
referencing and comparing the identified alleles with 
known information stored in specialized databases.  The 
commonly used databases for HLA typing interpretation 
are the IMGT/HLA Database and the Allele Registry.  
The IMGT/HLA Database, maintained by the 
International ImMunoGeneTics Information System® 
(IMGT®), is a comprehensive and authoritative 
resource for HLA sequences, alleles, and nomenclature.  
It provides a repository of  validated and curated HLA 
allele sequences, along with associated information such 
as exon boundaries, polymorphisms, and population 
frequencies.[20] To date, over 32,000 alleles have been 
identified for the class-I and class-II genes [IPD-
IMGT/HLA Database (ebi.ac.uk)]. The IMGT/
HLA Database is extensively utilized by laboratories 
and researchers to interpret HLA typing outcomes. 
Additionally, the Immunogenetics and Transplantation 
Laboratory at the Anthony Nolan Research Institute 
operates the Allele Registry, which serves as another 
valuable resource for interpreting HLA typing results.  
It contains a curated collection of  HLA allele sequences, 
including updates on new alleles, allele nomenclature, 
and other relevant information. The Allele Registry 
functions as a resource for HLA typing reference and 
supports the identification and characterization of  novel 
or rare alleles.  These databases serve as vital references 
for accurate and reliable interpretation of  HLA typing 
results, aiding in the determination of  allele specificity, 
population frequencies, and compatibility assessments 
for transplantation procedures.  It is important to 
note that these databases are regularly updated as new 
alleles are discovered and characterized. Therefore, it 
is important for laboratories and researchers to ensure 
they are using the most up-to-date versions of  these 
databases for accurate interpretation of  HLA typing 
results.

Matching for tissue transplantation

To facilitate allogeneic transplantation, it is essential 
for every laboratory to supply a detailed account of  
the matching status of  HLA assignments between a 
potential donor and a patient, whether they are related 
or unrelated individuals.[21] HLA haplotypes that are 
Identical by Descent (IBD) indicate haplotypes inherited 
from a common ancestor without any recombination 
events. These haplotypes are shared by individuals with 
a direct blood relationship, such as siblings or parents 
and children. Another type of  matching involves related 
donors who show compatibility with the patient’s tested 
HLA loci based on segregation within the family.  HLA 
identity for all loci tested means that two individuals 

Figure 5: HLA typing resolution.  
(Courtesy: www.hla.alleles.org).
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have an exact match of  HLA alleles across multiple 
HLA loci. In some families, it may not be possible to 
confirm Identity by Descent (IBD) through segregation 
analysis due to factors such as unavailable family 
members, complex family structures, multiple ancestral 
contributions, or recombination events. Alternative 
methods to estimate the probability of  IBD based on 
HLA allele frequencies are population-based statistical 
analyses, matching algorithms and comparisons with 
reference databases.  The overall goal is to minimize 
graft rejection risk and improve transplantation 
outcomes. With the availability of  IBD information, the 
algorithms and software tools are developed for HLA 
allele type imputation.[22]

Software used in HLA Prediction

Leslie et al. (2008) introduced a new statistical approach 
for HLA allele prediction. They utilized a database of  
SNP haplotypes containing known HLA alleles and 
employed an Identity-by-Descent (IBD) model based on 
approximate coalescent models to develop their LDMhc 
algorithm. For SNP selection, they implemented a 
leave-one-out cross-validation scheme.[22] Approximate 
coalescent models are computational methods used in 
population genetics to study the genealogical history 
and genetic diversity of  populations. They provide a 
simplified framework for simulating and analyzing genetic 
data by modelling the process of  genetic coalescence. 
These models make calculations more manageable by 
incorporating assumptions and approximations, such as 
constant population size or neglecting recombination. 
By using approximate coalescent models, researchers 
can gain insights into population history, genetic 
structure, and evolutionary processes. However, it’s 
important to validate these models against empirical 
data and consider their limitations. The LDMhc 
algorithm, also known as the “Linkage Disequilibrium-
based Multi-locus Haplotype Construction” algorithm, 
is a computational method used for haplotype inference 
from genotype data. It is specifically designed for 
multi-locus genetic data where Linkage Disequilibrium 
(LD) patterns exist between adjacent genetic markers. 
The LDMhc algorithm leverages LD patterns to infer 
haplotypes, which are combinations of  genetic variants 
inherited together on a chromosome.  Haplotypes are 
important in genetic studies as they provide insights into 
the inheritance patterns of  genetic variants and can help 
identify disease associations or population differences.  
The LDMhc algorithm utilizes LD measures, such as 
D’ and r-squared, to quantify the extent of  association 
between adjacent genetic markers. It then employs 
an iterative algorithm that assigns haplotypes to 

individuals based on the observed LD patterns and 
the compatibility of  haplotypes across individuals. The 
algorithm aims to find a set of  haplotypes that best 
explains the observed genotype data while satisfying 
LD constraints. By inferring haplotypes from genotype 
data using the LDMhc algorithm, researchers can 
gain a better understanding of  the underlying genetic 
variation and haplotype structure within a population. 
This information is useful in various genetic analyses, 
including disease association studies, population 
genetics, and understanding the evolutionary history 
of  populations. It’s important to note that the LDMhc 
algorithm is just one of  many algorithms available for 
haplotype inference, and its performance and suitability 
may vary depending on the specific dataset and research 
question.
In a subsequent study, Dilthey et al. (2010) developed 
the integrated software HLA*IMP, which incorporates 
a two-step approach. In the first step, haplotype 
frequencies are estimated from the SNP genotypes 
using a statistical model called LDMhc.[23] In the second 
step, HLA*IMP (Web service now discontinued) utilizes 
attribute bagging and expectation propagation to impute 
the HLA alleles based on the haplotype frequencies 
obtained in the first step. It has limitations such as bias 
due to the reference panel used, the inability to detect 
novel rare alleles and the possibility of  imputation errors 
leading to incorrect predictions.[23]

BEAGLE is an alternative method for HLA imputation, 
specifically designed to infer HLA genotypes and 
haplotypes from unphased SNP data.  It utilizes a 
statistical algorithm that leverages patterns of  Linkage 
Disequilibrium (LD) to impute missing genotypes and 
infer the underlying haplotypes.  It employs a Markov 
Chain Monte Carlo approach to estimate the most likely 
haplotype configurations based on the observed SNP 
data and LD information.  It utilizes reference panels 
or databases of  known HLA haplotypes to improve 
accuracy and impute missing or unobserved genotypes.  
It has certain limitations and it relies on the availability 
and quality of  reference panels, and its performance 
may vary depending on the specific population dataset.[24]

SNP2HLA performs the imputation of  amino acids, 
HLA alleles, and SNPs in the MHC region based on 
SNP genotype data.[25] Though it is valuable in studying 
the association between HLA alleles and diseases, it 
has certain limitations including reference panel bias, 
ambiguity in imputed alleles and population-specific 
effects.  HLA-Check is an additional tool that evaluates 
HLA data using SNP information, and its license 
explicitly permits unrestricted use and modification to 
suit individual requirements.[26]
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HIBAG utilizes SNP genotype data to impute HLA 
classical alleles, relying on a training set of  HLA 
genotype data.  Rather than necessitating access to 
extensive training sample datasets, it offers published 
parameter estimates to the research community.  HIBAG 
synergistically integrates attribute bagging, an ensemble 
classifier method, with haplotype inference for SNPs 
and HLA types.  The incorporation of  attribute bagging 
techniques, such as bootstrap aggregating and random 
variable selection, effectively improves the accuracy and 
stability of  classifier ensembles.[27] HLA-IMPUTER 
(Web service now discontinued) is a software tool 
used for imputing or predicting classical HLA alleles 
from genotype data. It is designed to fill in missing or 
unobserved HLA allele information based on genetic 
markers, typically SNPs.[28]

Deep*HLA is a deep learning-based method used 
for predicting HLA alleles from Next-Generation 
Sequencing (NGS) data. It employs deep neural 
networks to analyze the sequence reads and predicts 
the corresponding HLA alleles. Deep*HLA has shown 
promising results in terms of  accuracy and speed in 
HLA typing from NGS data. It is specifically designed 
to handle the complexities and challenges associated 
with high-throughput sequencing technologies.[29] 
CookHLA is a software tool used for HLA allele calling 
and genotyping from NGS data. It utilizes statistical 
models and computational algorithms to process the 
sequencing reads and determine the most likely HLA 
alleles present in the sample. CookHLA incorporates 
various steps, such as read alignment, variant calling, 
and HLA allele inference, to provide accurate and 
reliable HLA genotyping results. It is commonly used in 
research studies and clinical settings to analyze HLA data 
obtained from NGS platforms.[30]

From the review, the present study noticed that in 
developing an application for predicting HLA allele 
type, the R statistical programming language, the 
HIBAG package and their supplementary software 
tools are important and readily available for the research 
community.[31] It is supported through the recent 
comparison study that HIBAG is still one of  the best 
imputation methods.[32] The HIBAG software is freely 
accessible and publicly available as an R/Bioconductor 
package, which can be obtained from the following link: 
http://www.bioconductor.org/packages/HIBAG. It is 
compatible with Windows operating systems, allowing 
for easy installation and execution and it can also be 
installed in other operating systems like Linux and 
Mac OS. Packages found under Bioconductor software 
packages are used for imputing HLA types using SNP 
data.

HLA Genotype Imputation with Attribute Bagging 
(HIBAG)

HIBAG is a software tool specifically developed for 
conducting HLA typing based on genotype data. It 
employs imputation methods to deduce HLA types from 
SNP genotype data, offering a cost-effective solution for 
HLA typing.  By incorporating reference databases of  
HLA alleles, such as the IMGT/HLA database, HIBAG 
leverages the linkage disequilibrium patterns between 
HLA alleles and nearby SNPs to impute missing HLA 
genotypes. It is compatible with various genotyping 
platforms (Affymetrix, Illumina etc.) and can handle 
different formats of  genotype data. HIBAG is a method 
available as a regularly updating Bioconductor package 
developed for HLA typing using SNP genotype data  It 
also supports the typing of  multiple HLA loci, including 
HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQB1, 
and HLA-DRB1. It enables simultaneous typing of  
these loci by incorporating haplotype information and 
linkage disequilibrium patterns between them.  HIBAG 
incorporates reference databases of  HLA alleles, such 
as the International ImMunoGeneTics (IMGT)/HLA 
database, to perform the imputation. These databases 
contain extensive information about known HLA alleles, 
their haplotypes, and associated SNPs.  HIBAG offers 
the flexibility to create population-specific models for 
imputation. It considers the allele frequency distribution 
and linkage disequilibrium patterns specific to the target 
population, which can improve the accuracy of  HLA 
typing predictions.  HIBAG incorporates quality control 
measures to assess the reliability of  imputed HLA 
types and provides confidence estimates or imputation 
scores to indicate the accuracy of  the predictions. 
HIBAG provides confidence estimates or imputation 
scores to indicate the reliability of  the predicted HLA 
genotypes, allowing users to evaluate the accuracy of  
the results.  Importantly, it is available as open-source 
software, allowing researchers to access and modify the 
code to suit their specific needs. The open-source nature 
promotes collaboration and enables the incorporation 
of  new advancements and improvements.[31] The unique 
aspect of  HIBAG is that it doesn’t require access to huge 
training sample datasets; rather, researchers can utilise 
the published parameter estimates which are available 
on the website http://www.biostat.washington.edu/
bsweir/HIBAG/.

Algorithm behind HIBAG

In machine learning, ensemble techniques involve 
combining multiple models to make predictions rather 
than relying on a single model.  One such ensemble 
technique is bagging, which is the underlying principle 
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behind the Random Forest algorithm.  Bootstrap 
Aggregating (Bagging) is a technique that involves 
generating unique subsets of  the training data by 
randomly selecting samples with replacements. Each 
subset is used to train an individual base model, with 
decision trees being the base models in the case of  
Random Forest.  During the training of  a Random 
Forest, each decision tree is trained on a distinct 
subset of  the training data, generated through random 
sampling with replacement. Consequently, certain 
instances may occur multiple times within a subset, while 
others may be omitted.  Moreover, during each split in 
the decision tree, only a random subset of  features is 
considered, adding further randomness and diversity to 
the ensemble. When making predictions, the Random 
Forest combines the predictions from all the decision 
trees using a majority vote.  In classification tasks, the 
final prediction is determined by selecting the class 
with the highest number of  votes among the decision 
trees.  In regression tasks, the average prediction from 
the decision trees is taken.  By employing the bagging 
technique and aggregating the predictions of  multiple 
decision trees, Random Forest can achieve higher 
accuracy, robustness against overfitting, and improved 
generalization compared to individual decision trees. The 
diversity introduced by random sampling and feature 
selection helps the ensemble to capture different aspects 
of  the data, leading to more reliable predictions.[27,31]

Work Flow for the supplication development

HIBAG is one of  the packages in Bioconductor 
available for the research community, in which SNP data 
is employed for inferring HLA types. Researchers who 
have published population-based models can use HIBAG 
rather than needing access to huge training sample 
datasets.  Also, the models can be created using the same 
Bioconductor packages.  The database like the 1000 
Genomes Project website makes the HLA genotypes of  
study participants available to the public.[30] The classifier 
ensembles can increase accuracy and stability through 
the attribute bagging technique. This approach uses its 
own 30% randomised data together with 70% of  the 
training datasets of  SNP and HLA genotype data.  The 
30% of  data that was omitted is used as a validation set. 
Additionally, it lowers variance and aids in preventing 
overfitting. The classifier models are trained with several 
classifiers using the Bagging method. HIBAG functions 
contain the training algorithm and along with the user-
defined and R functions can develop an ensemble model, 
generally, 100 separate classifiers can be generated by 
default, Nevertheless, this procedure is time-consuming 
and typically requires approximately four days to 

complete on a single core.[31] In order to reduce the 
time, the available population-wise pre-fit classifiers can 
be used as models for the HLA type prediction.  To 
demonstrate the method of  application development, 
the standard HLA and SNPs datasets of  1000 genomes 
project are used from the ImmPute project.[32] The  
pre-fit classifiers of  broad and population-specific data 
are publicly available for the research community in the 
databases and can be used as models.  This application 
consists of  two main components. The first component 
involves downloading a pre-fitted classifier from the 
HIBAG website, applying it to an SNP dataset, and 
evaluating its foretelling performance. In the second 
component, the accuracy of  the imputation can be 
assessed. The accuracy of  the imputation is influenced 
by several factors, such as the evolutionary closeness 
of  the sample to the training set, the sample size of  
the training data, the frequency of  the HLA allele, and 
the density of  SNPs in the HLA region.  The workflow, 
depicted in Figure 6, includes prediction stages that 
utilize the input sample, model data, as well as the 
Bioconductor HIBAG and R functions.

CONCLUSION
In statistics,  imputation  is the method of  changing 
missing data with substituted values. There are many 
methods and software available for HLA imputation.  
When choosing a method and software for HLA 
imputation, several factors should be considered. 
First, define the specific goals of  the study, whether it 
is association studies, population genetics, or clinical 
applications, because, different methods and software 
may have specific strengths for different research 
objectives. Second, one should consider the type and 
amount of  genetic data one has as HLA imputation can 
be performed using genotyping arrays, whole-genome 
sequencing, or targeted sequencing data. Third, the 

Figure 6: Workflow of HLA prediction using R programming 
and Bioconductor package HIBAG.
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choice of  reference panel is important for imputation 
accuracy. Fourth, one should assess the imputation 
accuracy and resolution of  different methods by 
referring to benchmarking evaluations and studies. 
Hence, it is essential for researchers to conduct an 
up-to-date and comprehensive evaluation of  methods, 
software, and algorithms in order to select a dependable 
approach for analyzing HLA typing.  In this study, our 
main focus was to systematically compare the available 
HLA typing algorithms and published software tools. 
When computer science researchers interested in HLA 
research can collaborate with experts from genetics, 
immunology, or bioinformatics fields, they can provide 
valuable guidance to help in understanding the specialized 
terminology. These approaches will help researchers 
broaden their understanding of  the field and enable 
them to contribute to HLA research from a computer 
science perspective.  We believe that this work can 
support computer and biological researchers in choosing 
the best HLA typing method for their data. This, in 
turn, may help to develop more powerful tools in the 
future.  The study noticed that the Ensemble methods, 
Random Forest and Boosting algorithms are the few 
among the effective methods for HLA imputation.  
Also, the present study may continue to develop an 
application for the prediction of  HLA typing using the 
above-mentioned Bioconductor package HIBAG and its 
related algorithms.  Further, the results will be published 
somewhere else.
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ABBREVIATIONS
HLA: Human Leukocyte Antigen; MHC: 
Major histocompatibility complex; LD: Linkage 
disequilibrium; HWE: Hardy-Weinberg Equilibrium; 
GWAS: Genome-wide association studies; SNP: 
Single Nucleotide Polymorphism; WHO: World 
Health Organization; SBT: Sequence-based typing; 
WTCCC: Wellcome Trust Case Control Consortium; 
HIBAG: HLA Genotype Imputation with Attribute 
Bagging; NGS: Next-generation sequencing; IMGT: 
ImMunoGeneTics; Bagging: Bootstrap Aggregating.

SUMMARY
The Human Leukocyte Antigen (HLA) gene system 
is involved in transplantation and association with 
autoimmune, infectious and inflammatory diseases.  
They have highly polymorphic alleles among the 

individuals in a population. As with many changes in 
the allele, computational imputation-based HLA typing 
is possible which is more cost-effective and time-
consuming than the regular sequencing method.   There 
are many methods available for doing HLA imputation 
from HLA and SNP genotype data. The present study 
noticed from the literature that the Ensemble methods, 
Random Forest and Boosting algorithms are the few 
among the effective methods for HLA imputation.  The 
Bioconductor package HIBAG is freely available for the 
research community for imputing (assigning) HLA types 
using SNP data and it uses the R statistical programming 
language. On this aspect, in this review article, the basic 
concepts of  HLA, methods and software algorithms 
for the prediction of  HLA allele typing are discussed to 
understand easily by non-biologists.
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