Categorizing Functional Yoghurt Using Artificial Neural Network

Asian Journal of Biological and Life Sciences ,2020,9,2,xx-xx.
Published:June 2020
Type:Research Article
Author(s) affiliations:

JK Pallavi, Muthusamy Sukumar*

Center for Food Technology, Anna University, Chennai, Tamil Nadu, INDIA.


Yoghurt was supplemented with low molecular weight carbohydrates (LMWC) extracted from Syzygium cumini seeds. Total soluble solids, pH, color, titratable acidity, texture, sensory and shelf life studies were quantified in control and functional- F1 (1% LMWC) and F2 (5% LMWC) yoghurts over a period of 15 days. An artificial neural network (ANN) was developed that could classify the yoghurts with color, pH and % carbohydrate as inputs. The ANN with one hidden layer in a feed forward pyramidal framework was trained using the gradient descent algorithm to reach an MSE (Mean of Squared Errors) of 0.055314. Sixty data points were used for testing the model. Thirty each were used for training and validation. The ANN could classify the yoghurts with 100% efficiency (r = 0.95). This study presented a minimally invasive approach that can classify functional food products on the basis of physical and chemical properties to determine user acceptability.